

Uživatelský návod NLB-IQRF-Komunikace

Obsah

Obsah	1			
Důležitá upozornění				
Úvod do IQRF	2			
Základní pojmy v oblasti IQRF	2			
Začlenění čidla do IQRF sítě	2			
Změna RF pásma, RF komunikačního kanálu	3			
1) Změna lokálně připojeného IQRF modulu	4			
2) Změna vzdáleně připojeného IQRF modulu (CATS)	5			
Lokální Přibondování	7			
IQRF Smart connect Bonding	8			
Odbondování	9			
Na straně koordinátora i noda	9			
Pouze na straně noda	9			
Discovery	9			
Komunikace s čidlem	10			
Druhy DPA rámců				
Struktura obecného rámce				
Standardní IQRF funkce Enumerace sensorů				
Vyčtení hodnot naměřených jednotlivými sensory v čidle12				
Nastavování a vyčítání hodnot z čidla nad rámec standardních IQRF CMD				
Příklad vyčtení senzorů čidla NLB-CO2+RH+T-5-IQRF				
Příklad povolení kompletní LED signalizace čidla NLB-CO2+RH+T-5-IQRF	16			
Shrnutí postupu zprovoznění čidla	17			

Důležitá upozornění

Tento dokument je určen pro čidla NLB s FW 205 a vyšší a zároveň s IQRF modulky s OS 4.04D a DPA 415 a výše.

Modulky jsou provozovány v LP režimu, je proto nutné nastavit Coordinátora naprovoz LP +STD sítě.

Pro dosažení přesného měření a dlouhé výdrže baterií je nutné IQRF modulek uspávat v době kdy není nutné komunikovat. K tomu poslouží **příkaz Sleep** periferie IQRF OS. Doporučená nejkratší perioda vyčítání hodnot je 1x za 5minut a je důležité omezit komunikaci na nezbytné minimum. V případě nedodržení těchto doporučení může dojít k ovlivnění měření teploty.

Úvod do IQRF

IQRF je platforma bezdrátové komunikace využívající MESH síť s nízkou spotřebou, nízkou přenosovou rychlostí, vhodná pro menší objemy dat, s dosahem v rozmezí desítek až stovek metrů (až několik kilometrů u speciálních případů). Vhodné využití v oblastech telemetrie, průmyslového řízení, automatizaci budov a měst a další. Může být využita u každého elektronického zařízení, které vyžaduje bezdrátový přenos. Například pro bezdrátové ovládání, monitorování na dálku získaných dat, nebo připojení dalších zařízení k bezdrátové síti. Implementace IQRF je velmi snadná. Ke komunikaci je využíváno radiofrekvenčních pásem: free ISM **868 MHz**, **916 MHz** and **433 MHz**.

Každý komunikační modul obsahuje vestavěný operační systém, jenž zaštiťuje samotnou komunikaci. Krom os jsou do modulů nahrávány DPA pluginy (pro každé zařízení typu node a koordinátor různý plugin). Tyto pluginy poskytují základní nadstavbu os. Pokud je nutné přidat do aplikace nějaký uživatelský kód je to možné pomocí Custom DPA handleru, jenž je programem v jazyku c využívajícím DPA příkazy a funkce OS.

Základní pojmy v oblasti IQRF

nod	IQRF modul nakonfigurovaný jako uzel sítě, který se může podílet na dopravení zprávy k cílovému node.
koordinátor	IQRF modul nakonfigurovaný jako řídící prvek sítě, sloužící též jako výstupní bod z dané sítě.
bonding	Proces párování mezi zařízením typu koordinátor a zařízeními typu node.
discovery	Proces objevení topologie sítě sestávající se z nabondovaných node zařízení a
	koordinátora.

Začlenění čidla do IQRF sítě

K vytvoření plně funkční sítě je nutné provést tři základní kroky. Prvním krokem je nastavení modulu koordinátora a node (čidla) na stejné frekvenční pásmo a stejný RF kanál. Druhým z nich je přibondování čidla ke koordinátorovi. Třetím krokem je provedení tzv. discovery na koordinátorovi. Proces discovery provádíme až, když máme všechny prvky sítě přibondované a umístěné na pozicích, které budou zaujímat během provozu.

www.protronix.cz www.cidla.cz

K procesu bondování eventuálně v některých případech ododbondování je využíváno tlačítka PAIR umístěného na levém okraji vnitřku čidla (viz obr.).

Změna RF pásma, RF komunikačního kanálu

Z výroby odcházejí IQRF moduly v čidlech s následující konfigurací:

RF pásmo: 868 MHz RF kanál A: 52 TX power: 7 RX filter: 20 LP RX timeout: 255 Alternativní DSM kanál: 0

V případě nutnosti změny některého z parametrů, je možné tyto změny provést z prostředí IQRF IDE (viz <u>www.iqrf.org</u>) a to v případě že vlastníte některý z produktů, které s tímto prostředí spolupracují (gateway, vývojové kity) (viz <u>www.iqrf.org</u>).

1) Změna lokálně připojeného IQRF modulu

Pokud je možné modul vložit přímo do těchto zařízení, lze po vytvoření nového projektu v IQRF IDE konfiguraci změnit lokálně v menu vyvolaném stiskem CTRL+G. Zde nejdříve stáhneme aktuální konfiguraci modulu pomocí tlačítka Download (viz obr. níže).

'R Configuration					X
File: TR_config	uration_Coor~	0	🛃 🚨 🕻	DPA version:	3.xx 👻
OS	DPA	🤫 Security	Description		
RF band: RF band: RF channel A RF channel B	868 MHz 52 🗼 ^{1, 2, 3} 2 💌 ^{1, 2, 3,}	4	EPGM Carbon Enable after r Carbon Termination a Carbon Enable Carbon Enable	reset After ~1 minute by MCU pin pad ⁵	
TR Peripherals Thermome External Effective	s eter ⁵ EPROM ⁵	1 V fr 2 V 0 3 V T 4 U 5 R	alue from 62 to 6 In TR-7xD. Alue from 189 to nly for TR-7xD with alue 16 (433 MHz R-7xD with IQRF sed at RFPGM only.	7 (868 MHz band) all 255 (916 MHz band) th IQRF OS 3.08D or band) allowed only f OS 3.08D or above. y.	owed only allowed above. for
2		Default	Download	Upload	Close

Nyní provedeme potřebné změny a následně vytvořenou konfiguraci nahrajeme do modulu pomocí tlačítka Upload.

NLB-IQRF-Komunikace

2) Změna vzdáleně připojeného IQRF modulu (CATS)

Pokud není možné vložit modul přímo do připojeného zařízení, je možné využít nástroje CATS service tools vyvolaného stiskem CTRL+ALT+C. Nejprve ovšem provedeme zálohu pluginů, konfigurace a uživatelského kódu v zařízení, které budou muset být následně obnoveny. V CATS zadáme výchozí paravetry stiskem tlačítka Default a následně vytvoříme CATS stiskem Create CATS (viz obr. níže).

CATS Service Tools	▲ 廿 X
😪 Control 🛛 🐇 DPA Service Mode 🛛 🛓	RF Scanner
CATS Device	Create CATS Remove CATS
CATS Info	CATS Tools
Status: connected	○ RF Programmer
RF band: 868 MHz	DPA Service Mode
Version: 1.06	O RF Scanner
Copy DPA Service Mode Parameters	RF Programmer Parameters
RX sensitivity: High -	<u>R</u> F band: 868 MHz -
TX power: 7	RF channel <u>A</u> : 52
RF channel: 0	RF channel <u>B</u> : 2 🚔 🗹 Enabled
	TX power: 7
	Packet repeats: 1
Default	Silent mode C LP mode Default

Následně potvrdíme vyskakovací okna a vytvořili jsme diagnostické zařízení. Nyní se v horní části CATS Service TOOLS přepneme do záložky DPA Service Mode. Zde zvolíme MID: First available a následně stiskneme connect (viz obr. níže). Pole s heslem necháme nevyplněné

assword input format:	ASCII	-	MID: F	irst available 👻		Connect	Disconnect
ccess Password:							Scan MID
	ssword input format:	ssword input format: ASCII	ssword input format: ASCII -	ssword input format: ASCII MID: F ccess Password:	ssword input format: ASCII MID: First available ccess Password:	ASSWORD INput format: ASCII MID: First available Coss Password:	ASSWORD IN THE ASCII MID: First available Connect Connect

NLB-IQRF-Komunikace

Nyní odpojíme a připojíme napájení na čidle. Následně dojde k načtení čidla v SW. Po stisku Configure TR je možné změnit požadovaná nastavení (viz obr. níže).

[OSM				
	RFPGM	Unbond	Bond	Remove Address	Configure TR
	Backup	Restore	Clone		Indicate DPA Device

Zde nejdříve stáhneme aktuální konfiguraci tlačítkem Download, následně provedeme požadované změny a nakonec nahrajeme novou konfiguraci na modul tlačítkem Upload.

Nakonec jen odpojíme vzdáleně připojené čidlo pomocí tlačítka Disconnect, přepneme do záložky Control a stiskneme Remove CATS. Tím je změna dokončena, nyní proveďte obnovu zálohovaných pluginů, konfigurace a uživatelského kódu je-li to třeba.

Uživatelský návod NLB-IQRF-Komunikace

Lokální Přibondování

Před samotným procesem bondování je nutné ověřit, zda již modul node (naše čidlo) není k některému koordinátorovi přibondován (z výroby odchází čidlo nepřibondované). Pokud modul přibondován není, po přivedení napájení k čidlu začne na IQRF modulu v místě dvou malých otvorů na plechovém povrchu blikat po dobu 10s červené světlo. Pokud žádné světlo nesvítí, modul je k některému koordinátovi stále nabondován, v tomto případě nejdříve modul odbondujte dle kapitoly Odbondování.

- 1) Na modulu koordinátora aktivujte proces bondování dle dokumentace výrobce zařízení pro koordinátora
- 2) Na čidle stiskněte a držte tlačítko pro bondování (PAIR)
- 3) Úspěšné přibondování je signalizováno blikáním zeleného světa na modulu. Nyní uvolněte tlačítko.
- 4) V případě neúspěchu opakujte proces od bodu 1)

V případě, že je modul koordinátora připojen k IQRF IDE, může být proces lokáního bondování vyvolán z IQMESH network managera a to v záložce Control/IQMESH/Local. Zde nastavíme Virtuální adresu node modulku a zahájíme párování na straně koordinátora stiskem Bond node.

IQMESH Network Manager	→ ‡ X
ي چ 😒 📚	Solution 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
🔺 Control 🛛 🐺	Map View 📋 Table View
IQMESH	Bonding Local Remote Smart Address: 1 Auto address Test retries: 1 Bond Node
Backup	Only in Coordinator Unbond Node Clear All Bonds Rebond Node
Upload	Discovery TX power: 7 • Max. Node address: 0 •
TR Config	C Nodes Info
🗞 Maintenance	Bonded Nodes: 1 1
	Discovered Nodes: 0
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 HEX DEC
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
📄 Documents 🔛 Termina	I 🗱 IQMESH Network Manager

Uživatelský návod NLB-IQRF-Komunikace

IQRF Smart connect Bonding

Pokud máte možnost připojit modul koordinátora k IQRF IDE, ať už napřímo pomocí usb, nebo pomocí lokální Ethernetové sítě (např. v případě ethernetové Gateway), pak je možné provést párování pomocí Smart Connect. Obdobně je možné využít mobilní aplikaci IQRF Network Manager.

V IQRF IDE přejdeme do IQMESH Network Manageru, který se nachází v menu Tools. Zvolíme záložky Control/IQMESH/Smart. Následně vyplníme pole IQRF Smart connect code, nebo případně kódy IBK a MID a následně stiskneme Bond node. Během tohoto procesu musí být čidlo s node modulkem zapnuté. Nyní by mělo dojít k úspěšnému přibondování.

IQMESH Network Manager		γĻΧ
ي چ 😒 📚	S S S S S S	
A Control	Map View 🚺 Table View	
Nesh Iqmesh	Bonding	-
🗱 AutoNetwork	Local Remote Smart	
DPA Params	IQRF Smart Connect Code	
🔯 Backup	CviYPaNzEP479VWJGYmCxDbZ59qW1PvfEv ▼	E
Upload	IBK: <u>MID:</u>	
Config TR Config	Test retries: 1 - Bond Node	
Naintenance	Only in Coordinator Unbond Node Clear All Bonds Rebond Node	
	C Discovery	
	TX power: 7 Anx. Node address: 0 Discovery	
	C Nodes Info	
	Bonded Nodes: 0	
		-
📄 Documents 🔛 Termina	al 🐺 IQMESH Network Manager	

Odbondování

Na straně koordinátora i noda

- 1) Pokud zařízení koordinátora podporuje tuto variantu odbondování, přiveďte napájení na čidlo a postupujte dle návodu výrobce zařízení pro koordinátora.
- 2) Úspěšné odbondování je signalizováno blikáním červeného světla po dobu 10s.

U připojeného modulku koordinátora k IQRF IDE lze odbondování vyvolat v IQMESH network manageru v záložce Control/IQMESH/Local. Nastavíme virtuální adresu Nodu, který chceme odbondovat a stiskneme Unbond node.

IQMESH Network Manager		- ₽ ×
🞅 🥕 🔍 🍭	, 🔍 🧕 🛃 🗱 🕈 - File: none 🛛 🙀 🔐 🔛 👯 👯	
As Control	Table View	
IQMESH Image: AutoNetwork Image: DPA Params Image: Backup	Bonding Local Remote Smart Address: 1 Auto address Test retries: 1 Only in Coordinator Unbond Node Clear All Bonds Rebond Node	*
Upload	Discovery TX power: 7 Anax. Node address: 0 Discovery	-
Config TR Config	Nodes Info	
Naintenance	Bonded Nodes: 1 1	
	Discovered Nodes: 0	
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 HEX DEC	
	0 •	Ŧ

Pouze na straně noda

- 1) Stiskneme bondovací tlačítko
- 2) Stiskneme tlačítko reset
- 3) Na modulu začne svítit zelené světlo
- 4) Bondovací tlačítko držíme stisklé po dobu svitu zeleného světla
- 5) Ihned po zhasnutí zeleného světla tlačítko uvolníme
- 6) Úspěšné odbondování je signalizováno krátkým bliknutím červeného světla a jeho následným 10s blikáním.

Discovery

Po úspěšném přibondování všech nodů a rozmístění modulů dle následného běžného využívání spusťte proces Discovery dle návodu výrobce zařízení určeného pro koordinátora.

V případě vlastnictví některého ze zařízení připojitelného k prostředí IQRF IDE. Bližší informace naleznete na <u>www.iqrf.org</u>

Protronix s.r.o., Pardubická 177, Chrudim 537 01, Czech Republic

Komunikace s čidlem

Komunikace s čidlem je zprostředkována pomocí IQRF modulu, ke kterému zákazník přistupuje bezdrátově pomocí DPA zpráv (rámců).

DPA využívá little-endian, to znamená, že části rámce delší jak 1B jsou vysílány v pořadí od nejnižšího po nejvyšší byte. V následujících rámcích jsou data zapsána tak, že je nutné více bytové položky rámce **přerovnat dle little-endian**.

Komunikace probíhá podle standardního protokolu IQRF čidla. Vizte dokument IQRF-StandardSensor-Vxxx na adrese <u>http://www.iqrfalliance.org/techDocs/</u>. Níže je uvedeno několik příkladů použití. Další příklady včetně detailů najdete ve zmíněném dokumentu.

Druhy DPA rámců

Rozlišujeme tři druhy DPA rámců. Prvním z nich je DPA Request, kterým řídicí systém přes koordinátora odesílá požadavky danému nod modulu. Následuje DPA Confirmation, které je odesláno koordinátorem zpět řídicímu systému a potvrzuje přijetí DPA requestu. Nakonec je nodem odeslán DPA Response, který je odpověď na DPA Request. Více informací naleznete zde: <u>https://www.iqrf.org/DpaTechGuide/</u>

Struktura obecného rámce

	NADR	PNUM	PCMD	HWPID	Pdata	
	(2B)	(1B)	(1B)	(2B)	(0-56B)	
						'
	Chland			- * 220)		
NADR	Sitova	adresa mod	uiu (node 1	az 239)		
PNUM	Adresa	periferie				
PCMD	Příkaz	specifikující	požadovano	ou operaci p	ro danou pe	riferii
HWPID	Hodno	ta pro filtr d	lruhu Hardw	are node za	řízení, příka	z zpracován pouze pro
	shodné HWPID (0xFFFF – kontrola vynechána, zpracováno vždy)					
	HWPIC) čidla je záv	vislé na dané	ém typu čidl	a:	
	NLB-CC	D2+RH+T-5-	IQRF	HWPID	=0x4001	
	NLB-RH	+TIQRF		HWPID	=0x5001	
PData	Datová	i část závislá	na daném t	typu rámce,	PNUM, PCN	1D

Standardní IQRF funkce Enumerace sensorů

Slouží ke zjištění typů senzorů, které je možné u zařízení použít

DPA Request má tvar:

NADR	PNUM	PCMD	HWPID
adresa	0x5E	0x3E	podle čidla
(2B)	(1B)	(1B)	(2B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Příkaz specifikující operaci pro danou periferii (0x3E – Enumerace sensorů)
HWPID	Hodnota pro filtr druhu Hardware node zařízení

DPA Response má tvar:

NADR	PNUM	PCMD	HWPID	ErrN	DpaValue	PData
adresa	0x5E	0xBE	podle čidla	0	?	sensory
(2B)	(1B)	(1B)	(2B)	(1B)	(1B)	(max 32B)

NADR	Síťová adresa modulu (node 1 až 239)					
PNUM	Adresa periferie (0x5E – Periferie sensor)					
PCMD	Kód operace pro danou periferii (0xBE– Enumerace sensorů response)					
HWPID	Hardwarové ID čidla					
ErrN	Kód chyby, 0-bez chyby					
DpaValue	Kód DPA viz dokumentace k IQRF DPA					
PData (sensory)	Pole bajtů, kde každý bajt identifikuje typ čidla podle IQRF standardu. V současné době jsou v našich čidlech definovány některé z těchto sensorů:					
	0x01 – Teplotní senzor					
	$0x02 - CO_2$ senzor					
	0x03 – VOC senzor					
	0x04 – Extra-low Voltage (hodnota napětí baterií čidla)					
	0x80 – Senzor relativní vlhkosti					

Vyčtení hodnot naměřených jednotlivými sensory v čidle

Dle předchozí Enumerace sensorů, případně dle HWPID lze jednoznačně určit, jaké sensory jsou v čidle umístěny. Dle těchto informací pak následně můžeme vyčíst naměřené hodnoty těchto sensorů

DPA Request má tvar:

NADR	PNUM	PCMD	HWPID	PData
adresa	0x5E	0x01	podle čidla	sensory
(2B)	(1B)	(1B)	(2B)	(4B)

NADR	Síťová adresa modulu (node 1 až 239)			
PNUM	Adresa periferie (0x5E – Periferie sensor)			
PCMD	Kód operace pro danou periferii (0x01 – vyčtení sensorů i s jeho typem)			
HWPID	Hodnota pro filtr druhu Hardware node zařízení			
PData(sensory)	Bitová mapa určující vyčítané sensory. Pokud chceme vyčíst všechny, můžeme			
	zadat 0xFF, 0xFF, 0xFF, 0xFF			

DPA Response má tvar:

NADR	PNUM	PCMD	HWPID	ErrN	DpaValue	PData
adresa	0x5E	0x81	podle čidla	0	?	typy a hodnoty
(2B)	(1B)	(1B)	(2B)	(1B)	(1B)	(max 32B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0x81- Vyčtení sensorů response)
HWPID	Hardwarové ID čidla
ErrN	Kód chyby, 0-bez chyby
DpaValue	Kód DPA viz dokumentace k IQRF DPA
PData (typy a hodnoty)	Pole dvojic typ a hodnota

Typy mají stejné kódy jako při enumerace a to tedy takovéto:

0x01 – Teplotní senzor 0x02 – CO₂ senzor 0x03 – VOC senzor 0x04 – Extra-low Voltage (hodnota napětí baterií čidla) 0x80 – Senzor relativní vlhkosti

Samotné hodnoty mohou být o délce 1B a 2B u námi používaných sensorů. Pokud je hodnota 2B, nejdříve je v rámci odvysílán vyšší bajt.

Délky jednotlivých hodnot a jednotky, v nichž jsou hodnoty uvedeny, jsou takovéto:

Teplota – délka 2B (hodnota ve dvojkovém doplňku), jednotka je 0,0625 °C CO₂ – 2B (pouze kladné hodnoty), jednotka je 1 ppm VOC – 2B (pouze kladné hodnoty), jednotka je 1 ppm Relativní vlhkost – 1B, jednotka je 0,5% Extra-low Voltage (hodnota napětí baterií čidla) – 2B (hodnota ve dvojkovém doplňku), jednotka je 1 mV

NLB-IQRF-Komunikace

Nastavování a vyčítání hodnot z čidla nad rámec standardních IQRF CMD

Naše čidlo nabízí nastavení nad rámec IQRF standardu jako jsou například nastavení LED signalizace, či periody měření. Pro tyto účely je v IQRF modulu našeho čidla naimplementován nestandardní IQRF CMD 0x40 periferie Standard Sensor (0x5E), který přepošle čidlu hodnoty z datové části PData. Naše čidlo ovšem očekává data protokolu Modbus, který musí být naimplementován Uživatelem. Viz dokument um-NLB-Modbus-Komunikace.

DPA Request má tvar:

NADR	PNUM	PCMD	HWPID	PData
adresa	0x5E	0x40	podle čidla	Modbus rámec
(2B)	(1B)	(1B)	(2B)	(max 24B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0x40 – přeposílání surových dat)
HWPID	Hodnota pro filtr druhu Hardware node zařízení
PData(Modbus rámec)	Konkrétní data tvořící Modbus request rámec pro naše čidlo

DPA Response má tvar:

NADR	PNUM	PCMD	HWPID	ErrN	DpaValue	PData
adresa	0x5E	0xC0	podle čidla	0	?	Modbus rámec
(2B)	(1B)	(1B)	(2B)	(1B)	(1B)	(max 24B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0xC0- přeposílání surových dat odpověď)
HWPID	Hardwarové ID čidla
ErrN	Kód chyby, 0-bez chyby
DpaValue	Kód DPA viz dokumentace k IQRF DPA
PData (Modbus rámec)	Konkrétní odpověď čidla na předešlý Modbus request

Příklad vyčtení senzorů čidla NLB-CO2+RH+T-5-IQRF

DPA Request má tvar:

NADR	PNUM	PCMD	HWPID	PData
adresa	0x5E	0x01	0x4001	0xFF, 0xFF, 0xFF, 0xFF
(2B)	(1B)	(1B)	(2B)	(4B)

PData(sensory)	Chceme vyčíst všechny sensory, zadáme tedy 0xFF, 0xFF, 0xFF, 0xFF
HWPID	0x40001 – čidlo NLB-CO2+RH+T-5-IQRF
PCMD	Kód operace pro danou periferii (0x01 – vyčtení sensorů i s jeho typem)
PNUM	Adresa periferie (0x5E – Periferie sensor)
NADR	Síťová adresa modulu (node 1 až 239)

DPA Response má tvar:

NADR	PNUM	PCMD	HWPID	ErrN	DpaValue	PData
adresa	0x5E	0x81	0x4001	0x00	0x5E	0x01, 0x40, 0x01, 0x80, 0xA0, 0x02, 0xE8, 0x03
(2B)	(1B)	(1B)	(2B)	(1B)	(1B)	(max 32B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0x81 – Vyčtení sensorů response)
HWPID	0x4001 – čidlo NLB-CO2+RH+T-5
ErrN	0 – bez chyby
DpaValue	viz dokumentace k IQRF DPA
PData	Pole dvojic typ a hodnota

Rozklíčování významu pole PData:

Nejdříve je udán vždy typ senzoru a pak jeho hodnota tak jak již bylo uvedeno výše. Zde se tedy jedná o tyto dvojice:

Typ= 0x01 – Teplota	nižší B= 0x40	vyšší B= 0x01	výsledek= 0x140= 320*0,0625 °C= 20 °C
Typ= 0x80 – Relativní vlhkost	hodnota (1B)= 0	kA0	výsledek= 160*0,5 %= 80 %
Typ= 0x02 – CO ₂	nižší B= 0xE8	vyšší B= 0x03	výsledek= 0x3E8= 1000*1 ppm= 1000 ppm

Příklad povolení kompletní LED signalizace čidla NLB-CO2+RH+T-5-IQRF

Jako příklad uvedeme situaci, kdy bychom chtěli povolit všechny dostupné LED signalizace. V návodu um-NLB-Modbus-Komunikace zjistíme, že pro takovouto funkci je nutné zapsat do následujícího registru tyto hodnoty: Povolení LED indikace = 15

K tomu využijeme modbus funkci 0x10 - Funkce Zapiš více uchovávacích registrů

DPA Request má tvar:

NADR	PNUM	PCMD	HWPID	PData
adresa	0x5E	0x40	0x0001	0x01, 0x10, 0x9C, 0x42, 0x00, 0x01, 0x02, 0x00, 0x0F, 0xB5, 0x7F
(2B)	(1B)	(1B)	(2B)	(11B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0x40 – přeposílání surových dat)
HWPID	Hodnota pro filtr druhu Hardware node zařízení
PData(Modbus rámec)	Konkrétní data tvořící Modbus request rámec pro naše čidlo

DPA Response má tvar:

NADR	PNUM	PCMD	HWPID	ErrN	DpaValue	PData
adresa	0x5E	0xC0	podle čidla	0x00	0x5E	0x01, 0x10, 0x9C, 0x42, 0x00, 0x01, 0xBE, 0x4E
(2B)	(1B)	(1B)	(2B)	(1B)	(1B)	(8B)

NADR	Síťová adresa modulu (node 1 až 239)
PNUM	Adresa periferie (0x5E – Periferie sensor)
PCMD	Kód operace pro danou periferii (0xC0– přeposílání surových dat odpověď)
HWPID	Hardwarové ID čidla
ErrN	0 – bez chyby
DpaValue	viz dokumentace k IQRF DPA
PData (Modbus rámec)	Konkrétní odpověď čidla na předešlý Modbus request

Shrnutí postupu zprovoznění čidla

- 1) Nastavení RF parametrů modulu čidla, je-li to nutné
- 2) Přibondování čidla (node modulu) k vašemu koordinátorovi
- 3) Provedení procesu Discovery
- 4) Komunikací s čidlem pomocí standartní IQRF periferie sensor

